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Climate Science Fairness Trajectory Prediction
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p(y|x) =?
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How to model p(y|x) with a neural network?

7/32



NN+GMM

Bishop, “Mixture density networks”, Tech Report, 1994 8/32



NN+GMM

p(y|x) = GMM(y;λ=fθ(x))

with λ = (π, {(µi,Σi)}ki=1)

Bishop, “Mixture density networks”, Tech Report, 1994 8/32



NN+GMM

issue: put densities/mass where con-
straints are not satisfied!

⇒ loosing probability mass
⇒ sampling invalid points
⇒ unreliable predictions

Bishop, “Mixture density networks”, Tech Report, 1994 8/32



NN+GMM

Can we do better?

Bishop, “Mixture density networks”, Tech Report, 1994 8/32



NN+GMM

Can we do better?

Yes! A plug&play layer that

⇒ puts mass inside constrains
⇒ guarantees valid predictions
⇒ end-to-end differentiable

Bishop, “Mixture density networks”, Tech Report, 1994 8/32



NN+GMM NN+PAL

Bishop, “Mixture density networks”, Tech Report, 1994 8/32



Enter PAL
9/32



PAL Equation

1 0 1
Y1

1

0

1

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′
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PAL Equation

1 0 1
Y1

1

0

1

1 0 1
Y1

1 0 1
Y1

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

Belle, Passerini, and Van den Broeck, “Probabilistic Inference in Hybrid Domains by Weighted
Model Integration”, IJCAI, 2015 10/32



How to compute the normalization constant?
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How to compute the normalization constant?
⇒ numerical approximation!?
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Numerical Approximation

rejection sampling
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Smet et al., “Neural probabilistic logic programming in discrete-continuous domains”, UAI, 2023 12/32
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How to compute the normalization constant?
⇒ numerical approximation!? no!

13/32



Can we pick density q and constraints φ such
that integration is efficient
— and only needed once?

14/32



PAL Equation

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′
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The Constraints

1{Y |= φ}

φ ∈ satisfiability modulo
linear real arithmetic
(SMT(LRA))

Barrett and Tinelli, “Satisfiability modulo theories”, Handbook of Model Checking, 2018 16/32
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PAL Equation

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′
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The Distribution

q(Y;λ = fψ(x))

⇒ piecewise polynomials, e.g., splines

0 1 2 3 4 5
0.000

0.005
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0.015

0.020

0.025

Zeng et al., “Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical
Approximations”, NeurIPS, 2020 18/32
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The Distribution

q(Y;λ = fψ(x))

⇒ piecewise polynomials, e.g., splines
⇒ squared for non-negativity⇒ exact integration on a simplex

[Grundmann and Möller 1978]
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PAL Equation

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′
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The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity
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GASP!
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U
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GASP!

rejection sampling

2 5 8 11 14 17 20
dimension
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rej. samp:

n = 102

n = 104

n = 106
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P(Y)

Ground Truth GMM Flow PAL (ours)
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P(Y|X)

NN+PAL (14 knots) NN+GMM (K = 32) DeepSeaProblog

Smet et al., “Neural probabilistic logic programming in discrete-continuous domains”, UAI, 2023 24/32



P(Y|X)

NN+PAL (14 Knots) NN+GMM (K=80) DeepSeaProblog

Smet et al., “Neural probabilistic logic programming in discrete-continuous domains”, UAI, 2023 25/32



Results

NN + PAL NN + GMM DeepSeaProblog

scene 10 knots 14 knots K=50 K=100 -

1 log-like −2.08 −2.27 −2.64 −2.83 −3.87
Pr(¬φ) 0% 0% ≈21% ≈20% ≈ 49%

2 log-like −2.23 −2.09 −2.39 −2.42 −3.61
Pr(¬φ) 0% 0% ≈15% ≈14% ≈ 36%
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scene 10 knots 14 knots K=50 K=100 -

1 log-like −2.08 −2.27 −2.64 −2.83 −3.87
Pr(¬φ) 0% 0% ≈21% ≈20% ≈ 49%

2 log-like −2.23 −2.09 −2.39 −2.42 −3.61
Pr(¬φ) 0% 0% ≈15% ≈14% ≈ 36%

are we done?
26/32



Limitations & Future Work

I. Scaling to high-dimensional problems
⇒ hybridize with approximations

II. Parallelize sampling
⇒ Exact integral can help with inverse-transform sampling

III. Maximum a Posteriori (MAP)
⇒ Picking the right piece to simplify the problem

IV. Generalize the constraints to curves (e.g. NURBS)

⇒ go beyond SMT(LRA)

Chin and Sukumar, “An efficient method to integrate polynomials over polytopes and curved
solids”, Computer Aided Geometric Design, 2020 27/32
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Takeaway

PAL combines:

I. expressive distribution

II. rich and flexible constraints

III. fast and amortized integration

=> competitive on real-world data

28/32



Additional: Numerical Approximation
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The Integral - Detail Decomposition

I(λ) =

∫
q(y′;λ) 1{y′ |= φ} dY′

=

∫ (∑
α

λαy
′α

)
1{y′ |= φ} dY′

=
∑
α

(∫
λαy

′α
1{y′ |= φ} dY′

) (1)
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Benchmark: GASP! vs LATTE
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Benchmark: GASP! vs Rejection Sampling

d = 8 d = 12 amortized
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Figure: Left and center: runtime of GASP! and rejection sampling (using 10{2,4,6} samples) on
integrals over 4 random simplices for increasing dimensions. We report the relative error (%) for
rejection sampling. Right: Our amortization speed-up compared to rejection-sampling in
2-dimensions for the 12-degree polynomial. 32/32


