
A Probabilistic
Neuro-symbolic Layer
for Algebraic Constraint Satisfaction

Leander Kurscheidt
University of Edinburgh, UK

Paolo Morettin Roberto Sebastiani Andrea Passerini Antonio Vergari
University of Trento, Italy University of Trento, Italy University of Trento, Italy University of Edinburgh, UK

UAI 2025 Oral

A Probabilistic
Neuro-symbolic Layer
for Algebraic Constraint Satisfaction

Leander Kurscheidt
University of Edinburgh, UK

Paolo Morettin Roberto Sebastiani Andrea Passerini Antonio Vergari
University of Trento, Italy University of Trento, Italy University of Trento, Italy University of Edinburgh, UK

UAI 2025 Oral

A Probabilistic
Neuro-symbolic Layer
for Algebraic Constraint Satisfaction

Leander Kurscheidt
University of Edinburgh, UK

Paolo Morettin Roberto Sebastiani Andrea Passerini Antonio Vergari
University of Trento, Italy University of Trento, Italy University of Trento, Italy University of Edinburgh, UK

UAI 2025 Oral

A Probabilistic
Neuro-symbolic Layer
for Algebraic Constraint Satisfaction

Leander Kurscheidt
University of Edinburgh, UK

Paolo Morettin Roberto Sebastiani Andrea Passerini Antonio Vergari
University of Trento, Italy University of Trento, Italy University of Trento, Italy University of Edinburgh, UK

UAI 2025 Oral

Climate Science Fairness Trajectory Prediction

C = 0 C = 1
0.0

0.2

0.4

0.6

0.8

1.0

∑
yi = yobs |P (A|C=0)−P (A|C=1)| ≤ ϵ y /∈▨

[Harder et al. 2023] [Dwork et al. 2012] [Robicquet et al. 2016]

5/32

Climate Science Fairness Trajectory Prediction

C = 0 C = 1
0.0

0.2

0.4

0.6

0.8

1.0

∑
yi = yobs |P (A|C=0)−P (A|C=1)| ≤ ϵ y /∈▨

[Harder et al. 2023] [Dwork et al. 2012] [Robicquet et al. 2016]

5/32

Climate Science Fairness Trajectory Prediction

C = 0 C = 1
0.0

0.2

0.4

0.6

0.8

1.0

∑
yi = yobs |P (A|C=0)−P (A|C=1)| ≤ ϵ y /∈▨

[Harder et al. 2023] [Dwork et al. 2012] [Robicquet et al. 2016]

5/32

6/32

6/32

6/32

6/32

p(y|x) =?
6/32

How to model p(y|x) with a neural network?

7/32

NN+GMM

Bishop, “Mixture density networks”, Tech Report, 1994 8/32

NN+GMM

p(y|x) = GMM(y;λ=fθ(x))

with λ = (π, {(µi,Σi)}ki=1)

Bishop, “Mixture density networks”, Tech Report, 1994 8/32

NN+GMM

issue: put densities/mass where con-
straints are not satisfied!

⇒ loosing probability mass
⇒ sampling invalid points
⇒ unreliable predictions

Bishop, “Mixture density networks”, Tech Report, 1994 8/32

NN+GMM

Can we do better?

Bishop, “Mixture density networks”, Tech Report, 1994 8/32

NN+GMM

Can we do better?

Yes! A plug&play layer that

⇒ puts mass inside constrains
⇒ guarantees valid predictions
⇒ end-to-end differentiable

Bishop, “Mixture density networks”, Tech Report, 1994 8/32

NN+GMM NN+PAL

Bishop, “Mixture density networks”, Tech Report, 1994 8/32

Enter PAL
9/32

PAL Equation

1 0 1
Y1

1

0

1

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

10/32

PAL Equation

1 0 1
Y1

1

0

1

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

10/32

PAL Equation

1 0 1
Y1

1

0

1

1 0 1
Y1

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

10/32

PAL Equation

1 0 1
Y1

1

0

1

1 0 1
Y1

1 0 1
Y1

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

10/32

PAL Equation

1 0 1
Y1

1

0

1

1 0 1
Y1

1 0 1
Y1

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

Belle, Passerini, and Van den Broeck, “Probabilistic Inference in Hybrid Domains by Weighted
Model Integration”, IJCAI, 2015 10/32

How to compute the normalization constant?

11/32

How to compute the normalization constant?
⇒ numerical approximation!?

11/32

Numerical Approximation

rejection sampling

2 4 6 8
dimensions

10 2

10 1

100

101

102

103

tim
e

(s
)

timeoutrej. sampling
n = 102

n = 104

n = 106

Smet et al., “Neural probabilistic logic programming in discrete-continuous domains”, UAI, 2023 12/32

Numerical Approximation

rejection sampling

2 4 6 8
dimensions

10 2

10 1

100

101

102

103

tim
e

(s
)

timeoutrej. sampling
n = 102

n = 104

n = 106

amortized?

0 5000 10000
data points

Smet et al., “Neural probabilistic logic programming in discrete-continuous domains”, UAI, 2023 12/32

How to compute the normalization constant?
⇒ numerical approximation!? no!

13/32

Can we pick density q and constraints φ such
that integration is efficient
— and only needed once?

14/32

PAL Equation

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

15/32

The Constraints

1{Y |= φ}

φ ∈ satisfiability modulo
linear real arithmetic
(SMT(LRA))

Barrett and Tinelli, “Satisfiability modulo theories”, Handbook of Model Checking, 2018 16/32

The Constraints

1{Y |= φ}

φ ∈ satisfiability modulo
linear real arithmetic
(SMT(LRA))

Barrett and Tinelli, “Satisfiability modulo theories”, Handbook of Model Checking, 2018 16/32

The Constraints

1{Y |= φ}

φ ∈ satisfiability modulo
linear real arithmetic
(SMT(LRA))

Barrett and Tinelli, “Satisfiability modulo theories”, Handbook of Model Checking, 2018 16/32

PAL Equation

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

17/32

The Distribution

q(Y;λ = fψ(x))

⇒ piecewise polynomials, e.g., splines

0 1 2 3 4 5
0.000

0.005

0.010

0.015

0.020

0.025

Zeng et al., “Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical
Approximations”, NeurIPS, 2020 18/32

The Distribution

q(Y;λ = fψ(x))

⇒ piecewise polynomials, e.g., splines
⇒ squared for non-negativity

0 1 2 3 4 5
0.000

0.005

0.010

0.015

0.020

0.025

Zeng et al., “Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical
Approximations”, NeurIPS, 2020 18/32

The Distribution

q(Y;λ = fψ(x))

⇒ piecewise polynomials, e.g., splines
⇒ squared for non-negativity

0 1 2 3 4 5
0.000

0.005

0.010

0.015

0.020

0.025

Zeng et al., “Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical
Approximations”, NeurIPS, 2020 18/32

The Distribution

q(Y;λ = fψ(x))

⇒ piecewise polynomials, e.g., splines
⇒ squared for non-negativity

0 1 2 3 4 5
0.000

0.005

0.010

0.015

0.020

0.025

Zeng et al., “Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical
Approximations”, NeurIPS, 2020 18/32

The Distribution

q(Y;λ = fψ(x))

⇒ piecewise polynomials, e.g., splines
⇒ squared for non-negativity

0 1 2 3 4 5
0.000

0.005

0.010

0.015

0.020

0.025

Zeng et al., “Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical
Approximations”, NeurIPS, 2020 18/32

The Distribution

q(Y;λ = fψ(x))

⇒ piecewise polynomials, e.g., splines
⇒ squared for non-negativity⇒ exact integration on a simplex

[Grundmann and Möller 1978]

0 1 2 3 4 5
0.000

0.005

0.010

0.015

0.020

0.025

Zeng et al., “Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical
Approximations”, NeurIPS, 2020 18/32

PAL Equation

pΘ(Y | x) =
q(Y;λ = fψ(x)) · 1{Y |= φ}∫
q(y′;λ = fψ(x))1{y′ |= φ} dY′

19/32

The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity

20/32

The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity

20/32

The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

= I(λ)

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity

20/32

The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

= I(λ)

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity

20/32

The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

= I(λ)

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity

20/32

The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

= I(λ)

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity

20/32

The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

= I(λ)

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity

20/32

The Integral

∫
q(y′;λ)1{y′ |= φ} dY′

= I(λ)

I. we introduce a new, GPU-accelerated integration
backend called GASP!

II. it calculates the symbolic integral in seconds
⇒ 8 seconds for a 81 piece squared spline (deg. 12)
on the SDD-Dataset
⇒ up to 2 orders of magnitudes faster than previ-

ous WMI-Solvers

III. the result is a function of λ
⇒ compile only once, evaluate cheaply many times
⇒ training independent on constraint complexity

20/32

GASP!

G

P

U

21/32

GASP!

G

P

U

21/32

GASP!

G

P

U

21/32

GASP!

G

P

U

21/32

GASP!

G

P

U

21/32

GASP!

G

P

U

21/32

GASP!

G

P

U

21/32

GASP!

rejection sampling

2 5 8 11 14 17 20
dimension

10 2

10 1

100

101

102

103

tim
e

(s
)

GASP!
rej. samp:

n = 102

n = 104

n = 106

22/32

GASP!

rejection sampling

2 5 8 11 14 17 20
dimension

10 2

10 1

100

101

102

103

tim
e

(s
)

GASP!
rej. samp:

n = 102

n = 104

n = 106

amortized

0 5000 10000
data points

22/32

P(Y)

Ground Truth GMM Flow PAL (ours)

23/32

P(Y|X)

NN+PAL (14 knots) NN+GMM (K = 32) DeepSeaProblog

Smet et al., “Neural probabilistic logic programming in discrete-continuous domains”, UAI, 2023 24/32

P(Y|X)

NN+PAL (14 Knots) NN+GMM (K=80) DeepSeaProblog

Smet et al., “Neural probabilistic logic programming in discrete-continuous domains”, UAI, 2023 25/32

Results

NN + PAL NN + GMM DeepSeaProblog

scene 10 knots 14 knots K=50 K=100 -

1 log-like −2.08 −2.27 −2.64 −2.83 −3.87
Pr(¬φ) 0% 0% ≈21% ≈20% ≈ 49%

2 log-like −2.23 −2.09 −2.39 −2.42 −3.61
Pr(¬φ) 0% 0% ≈15% ≈14% ≈ 36%

26/32

Results

NN + PAL NN + GMM DeepSeaProblog

scene 10 knots 14 knots K=50 K=100 -

1 log-like −2.08 −2.27 −2.64 −2.83 −3.87
Pr(¬φ) 0% 0% ≈21% ≈20% ≈ 49%

2 log-like −2.23 −2.09 −2.39 −2.42 −3.61
Pr(¬φ) 0% 0% ≈15% ≈14% ≈ 36%

26/32

Results

NN + PAL NN + GMM DeepSeaProblog

scene 10 knots 14 knots K=50 K=100 -

1 log-like −2.08 −2.27 −2.64 −2.83 −3.87
Pr(¬φ) 0% 0% ≈21% ≈20% ≈ 49%

2 log-like −2.23 −2.09 −2.39 −2.42 −3.61
Pr(¬φ) 0% 0% ≈15% ≈14% ≈ 36%

are we done?
26/32

Limitations & Future Work

I. Scaling to high-dimensional problems
⇒ hybridize with approximations

II. Parallelize sampling
⇒ Exact integral can help with inverse-transform sampling

III. Maximum a Posteriori (MAP)
⇒ Picking the right piece to simplify the problem

IV. Generalize the constraints to curves (e.g. NURBS)

⇒ go beyond SMT(LRA)

Chin and Sukumar, “An efficient method to integrate polynomials over polytopes and curved
solids”, Computer Aided Geometric Design, 2020 27/32

Limitations & Future Work

I. Scaling to high-dimensional problems
⇒ hybridize with approximations

II. Parallelize sampling
⇒ Exact integral can help with inverse-transform sampling

III. Maximum a Posteriori (MAP)
⇒ Picking the right piece to simplify the problem

IV. Generalize the constraints to curves (e.g. NURBS)

⇒ go beyond SMT(LRA)

Chin and Sukumar, “An efficient method to integrate polynomials over polytopes and curved
solids”, Computer Aided Geometric Design, 2020 27/32

Limitations & Future Work

I. Scaling to high-dimensional problems
⇒ hybridize with approximations

II. Parallelize sampling
⇒ Exact integral can help with inverse-transform sampling

III. Maximum a Posteriori (MAP)
⇒ Picking the right piece to simplify the problem

IV. Generalize the constraints to curves (e.g. NURBS)

⇒ go beyond SMT(LRA)

Chin and Sukumar, “An efficient method to integrate polynomials over polytopes and curved
solids”, Computer Aided Geometric Design, 2020 27/32

Limitations & Future Work

I. Scaling to high-dimensional problems
⇒ hybridize with approximations

II. Parallelize sampling
⇒ Exact integral can help with inverse-transform sampling

III. Maximum a Posteriori (MAP)
⇒ Picking the right piece to simplify the problem

IV. Generalize the constraints to curves (e.g. NURBS)

⇒ go beyond SMT(LRA)

Chin and Sukumar, “An efficient method to integrate polynomials over polytopes and curved
solids”, Computer Aided Geometric Design, 2020 27/32

Limitations & Future Work

I. Scaling to high-dimensional problems
⇒ hybridize with approximations

II. Parallelize sampling
⇒ Exact integral can help with inverse-transform sampling

III. Maximum a Posteriori (MAP)
⇒ Picking the right piece to simplify the problem

IV. Generalize the constraints to curves (e.g. NURBS)

⇒ go beyond SMT(LRA)

Chin and Sukumar, “An efficient method to integrate polynomials over polytopes and curved
solids”, Computer Aided Geometric Design, 2020 27/32

Takeaway

PAL combines:

I. expressive distribution

II. rich and flexible constraints

III. fast and amortized integration

=> competitive on real-world data

28/32

Additional: Numerical Approximation

2 5 8 11 14 17 20
dimension

10 2

10 1

100

101

102

103

tim
e

(s
)

2 5 8 11 14 17 20
dimension

10 2

10 1

100

101

102

103

2 5 8 11 14 17 20
dimension

10 2

10 1

100

101

102

103

29/32

The Integral - Detail Decomposition

I(λ) =

∫
q(y′;λ) 1{y′ |= φ} dY′

=

∫ (∑
α

λαy
′α

)
1{y′ |= φ} dY′

=
∑
α

(∫
λαy

′α
1{y′ |= φ} dY′

) (1)

30/32

Benchmark: GASP! vs LATTE

10 210 110+010+110+210+3

SAE4WMI(latte) [seconds]

10 2

10 1

10+0

10+1

10+2

10+3

SA
E4

W
M

I(g
as

p!
) [

se
co

nd
s] timeout

31/32

Benchmark: GASP! vs Rejection Sampling

d = 8 d = 12 amortized

2 4 6 8 10
dimensions

10 2

10 1

100

101

102

103

tim
e

(s
)

11.5%11.5%

9.5%

1.3%
0.0%

timeoutGASP!
rej. samp:

n = 102

n = 104

n = 106

2 4 6 8 10
dimensions

13.9%11.7%

12.0%

1.3%
0.1%

timeout

0 5000 10000
data points

Figure: Left and center: runtime of GASP! and rejection sampling (using 10{2,4,6} samples) on
integrals over 4 random simplices for increasing dimensions. We report the relative error (%) for
rejection sampling. Right: Our amortization speed-up compared to rejection-sampling in
2-dimensions for the 12-degree polynomial. 32/32

